Antibiotic inhibition of RNA catalysis: neomycin B binds to the catalytic core of the td group I intron displacing essential metal ions.

نویسندگان

  • I Hoch
  • C Berens
  • E Westhof
  • R Schroeder
چکیده

The aminoglycoside antibiotic neomycin B induces misreading of the genetic code during translation and inhibits several ribozymes. The self-splicing group I intron derived from the T4 phage thymidylate synthase (td) gene is one of these. Here we report how neomycin B binds to the intron RNA inhibiting splicing in vitro. Footprinting experiments identified two major regions of protection by neomycin B: one in the internal loop between the stems P4 and P5 and the other in the catalytic core close to the G-binding site. Mutational analyses defined the latter as the inhibitory site. Splicing inhibition is strongly dependent on pH and Mg2+ concentration, suggesting electrostatic interactions and competition with divalent metal ions. Fe2+-induced hydroxyl radical (Fe-OH.) cleavage of the RNA backbone was used to monitor neomycin-mediated changes in the proximity of the metal ions. Neomycin B protected several positions in the catalytic core from Fe-OH. cleavage, suggesting that metal ions are displaced in the presence of the antibiotic. Mutation of the bulged nucleotide in the P7 stem, a position which is strongly protected by neomycin B from Fe-OH. cleavage and which has been proposed to be involved in binding an essential metal ion, renders splicing resistant to neomycin. These results allowed the docking of neomycin to the core of the group I intron in the 3D model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Identification of Catalytic Metal Ion Binding Sites within RNA

The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). In the Tetrahymena group I intron, previo...

متن کامل

Atomic level architecture of group I introns revealed.

Twenty-two years after their discovery as ribozymes, the self-splicing group I introns are finally disclosing their architecture at the atomic level. The crystal structures of three group I introns solved at moderately high resolution (3.1-3.8A) reveal a remarkably conserved catalytic core bound to the metal ions required for activity. The structure of the core is stabilized by an intron-specif...

متن کامل

Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.

Although the active site of group I introns is phylogenetically conserved, subclasses of introns have evolved different mechanisms of stabilizing the catalytic core. Large introns contain weakly conserved 'peripheral' domains that buttress the core through predicted interhelical contacts, while smaller introns use loop-helix interactions for stability. In all cases, specific and non-specific ma...

متن کامل

Interactions of the antibiotics neomycin B and chlortetracycline with the hammerhead ribozyme as studied by Zn2+-dependent RNA cleavage.

We have investigated the interactions of two antibiotics, neomycin B and chlortetracycline (CTC), with the hammerhead ribozyme using two Zn(2+) cleavage sites at U4 and A9 in its catalytic core. CTC-dependent inhibition of Zn(2+) cleavage was observed in all cases. In contrast, we unexpectedly observed acceleration of A9 cleavage by neomycin under low ionic strength conditions similar to those ...

متن کامل

Crystal structure of a self-spliced group II intron.

Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 282 3  شماره 

صفحات  -

تاریخ انتشار 1998